Expressing properties in second- and third-order logic: hypercube graphs and SATQBF
نویسندگان
چکیده
منابع مشابه
Expressing Properties in Second and Third Order Logic: Hypercube Graphs and SATQBF
It follows from the famous Fagin’s theorem that all problems in NP are expressible in existential second-order logic (∃SO), and vice versa. Indeed, there are well-known ∃SO characterizations of NPcomplete problems such as 3-colorability, Hamiltonicity and clique. Furthermore, the ∃SO sentences that characterize those problems are simple and elegant. However, there are also NP problems that do n...
متن کاملCircle graphs and monadic second-order logic
A circle graph is the intersection graph of a set of chords of a circle. If a circle graph is prime for the split (or join) decomposition defined by Cunnigham, it has a unique representation as a set of intersecting chords, and we prove that this representation can be defined by monadic second-order formulas. By using the (canonical) split decomposition of a circle graph, one can define in mona...
متن کاملself-revision and third party revision in translation
اهمیت این پژوهش در آن بود که به گفت? بسیاری از پژوهشگرانِ حوز? بازبینی ترجمه، ادبیات موجود در این زمینه به لحاظ نظری و عملی چندان قوی نیست و بخش های موجود نیز برداشت مناسبی از این مرحل? فرایند ترجمه ندارند، اگرچه اخیراً توجه به آن به صورت نظام مند افزایش یافته است. در عین حال، پژوهش های موجود از یک سو بر دگربازبینی بیشتر از خودبازبینی تأکید دارند و از دیگر سو تنها به لحاظ نظری به این موضوع می پرد...
15 صفحه اولExpressing cardinality quantifiers in monadic second-order logic over chains
We study the extension of monadic second-order logic of order with cardinality quantifiers “there exists infinitely many sets” and “there exists uncountably many sets”. On linear orders that require the addition of only countably many points to be complete, we show using the composition method that the second-order uncountability quantifier can be reduced to the first-order uncountability quant...
متن کاملExpressing Cardinality Quantifiers in Monadic Second-Order Logic over Trees
We study an extension of monadic second-order logic of order with the uncountability quantifier “there exist uncountably many sets”. We prove that, over the class of finitely branching trees, this extension is equally expressive to plain monadic second-order logic of order. Additionally we find that the continuum hypothesis holds for classes of sets definable in monadic second-order logic over ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Logic Journal of IGPL
سال: 2013
ISSN: 1367-0751,1368-9894
DOI: 10.1093/jigpal/jzt025